

Engineering of Multiagent Systems

Scott A. DeLoach, Ph.D.

Dept of Electrical and Computer Engineering
Air Force Institute of Technology

March 2001

http://en.afit.af.mil/sdeloach/

sdeloach@computer.org

Engineering of Multiagent Systems

Scott A. DeLoach, Ph.D.

Dept of Computing & Information Sciences

Kansas State University

July 2001

http://www.cis.ksu.edu/

sdeloach@computer.org

Overview

- Motivation
 - What are multiagent systems and why do we need them
- Multiagent Systems Engineering (MaSE)
 - Specification to code methodology for building multiagent systems
- agentTool
 - Automation for MaSE
 - Supports design, verification, and code generation
- Wrap Up

3

Agent

- An agent is anything that can be viewed as
 - perceiving its environment
 - acting upon that environment
- An intelligent agent is an agent that
 - is *autonomous* agent
 - exhibits *goal-directed* behavior
 - *interacts* with other agents

Multiagent System

- A system consisting the following elements
 - An environment
 - A set of objects in the environment
 - Objects are passive and can be perceived, created, destroyed & modified by agents
 - A set of agents
 - A set of relations, which link agents/objects
 - > Relations between agents are called acquaintances

Why Multiagent Systems?

- Problems are physically distributed
- Networks force us to take a distributed view
- Problem complexity forces us to take a local viewpoint
- We need systems that are
 - adaptive to changes in the structure or environment
 - redundant & reconfigurable
 - allow integration of legacy systems
 - provide automated data conversion
 - give different types of users different views of system capability and information

7

Key Aspects of Multiagent Systems

- Action
 - How do several agents act simultaneously
 - What are the consequences of their actions
- Interaction
 - How do we describe mechanisms allowing agents to interact
 - How do we induce specific behavior in other agents
 How to handle cooperation versus competition
- Organization
 - Which agents can interact
 - What types of interactions are allowed

Building Multiagent Systems

- Design must be
 - Adaptive
 - Extensible
 - Dynamic
 - Verifiable
- Requires a principled approach
 - Methodology
 - Language
 - Tools

- Methodology and modeling language must focus on
 - Organization
 - Action
 - Interaction

9

Multiagent Systems Engineering

Methodology Goals

- Full "engineering" approach to multiagent systems development
 - Analysis, design, and implementation
 - Series of graphically based models
 - Logical approach to transforming one model into next
- Support heterogeneous multiagent systems
 - Languages
 - Architectures
 - Environment
- Tool supportable

Design

- We have to ensure that the organization, action, and interaction specified in the analysis is designed into our system
- Transform analysis artifacts into design artifacts
 - ullet Roles o agent classes
 - ullet Concurrent tasks o conversations and actions

agentTool

25

Toolset Goals

- Enforce methodology
 - Allow users as much freedom as possible
- Automate design transformations
 - Designer performs analysis & makes design decisions
 - Tools carry out details and perform bookkeeping
- Automate verification
 - Verify at the design level before generating code
- Reuse of analysis, design, & code
- Hide formality
- Generate "correct by construction" code

Support Transformations

- User decides "what" to do
 - What roles should be played by what agent
 - What communication in a task should become a conversation
- agentTool performs automatable tasks
 - Transform tasks communications and activities into conversations and agent methods
- Analysis to design transformations are currently in development

Code Generation

- Automatic from agent and conversation diagrams
- Select platform-dependent components such as a messaging framework

Results

- MaSE and agentTool have been used to develop several small to medium sized multiagent systems
 - Information systems
 - Mixed-initiative distributed planners
 - Biologically-based immune & intrusion detection systems
 - Autonomous control of Uninhabited Air Vehicles
- Users report that MaSE is relatively simple, yet flexible enough to allow a variety of solutions
- Currently developing larger scale multiagent systems that are both mobile and dynamic in nature
- agentTool has an active user list of over 100 world-wide academic, government, and industry users

Current Research

- Transformations from analysis models to design models
 - Concurrent task ⇒ conversations & internal agent design
- Extension to add dynamic capabilities
 - Agent creation, Death, Mobility, Cloning
- When is the multiagent paradigm appropriate?
- Adding robustness to analysis via obstacles
- Adding ontology development to design

39

Wrap Up

- Defined multiagent systems and why we need them
- Multiagent Systems Engineering (MaSE)
 - Specification to code methodology for building multiagent systems
- agentTool
 - Automation for MaSE
 - Supports design, verification, and code generation
- For more info see http://en.afit.af.mil/ai/